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This paper examines several of the approximations or models involved in
the development of a numerical combustor flow code. In the first section, the

importance of numerical accuracy is illustrated, and the impact that improved-

accuracy schemes have on slowing convergence is demonstrated. Solution algo-

rithms that can speed convergence are discussed and some performance features

of these algorithms are illustrated. A sample calculation displaying the

importance of boundary conditions on a three-dlmenslonal numerical prediction

is presented. The inaccuracy of a current turbu]ence model in highly turbu-

lent (nonequlllbrlum) regions is described. Finally, the surprisingly good

performance of a slx-flux model in descrlblng radiation heat transfer Is dls-

played. In all the areas examined, continued research is still needed, but

valuable engineering tools are available today.

INTRODUCTION

Three-dlmenslonal combustor calculatlons involve detailed modeling of

several important physical processes. Airflow, chemical reactions, fuel

sprays, and turbulence are Just a few of the physical processes that must be

described. Many of these processes occur on both a molecular and a macro-

scopic scale. To exactly describe these processes numerically, one must

resolve these scales on a computational mesh. And this is clearly beyond

current computational resources. To make the computational task tractable,
we introduced modeling assumptions. These modeling assumptions limit the

generality of the computational flow code, but It Is hoped that the dominant

physics remain correctly represented.

Modeling assumptions are only the first limit of generality introduced

when developing a combustor flow code. A further limit Is introduced by the

need to approximate the modeled equations before they are solved numerically.

Thls approximation process can significantly affect the accuracy of a model

prediction.

In vlew of all these factors, a combustor designer cannot be expected to

fully embrace a computer model prediction. If a clear distinction between

modeling errors and errors introduced by the numerical solution algorithm can-

not be made, then the designer is left wlth a very unreliable computational
tool.

Thls paper examines some of the compromises made when developing combus-
tor flow codes and how these compromises affect the accuracy of turbulent flow

calculations. To assess the balance of the modeling compromises, we compare a

number of sample calculations wlth experimental data. This paper examines the
flve areas of numerical accuracy, solution algorithms, inlet boundary condi-

tions, turbulence models, and radiative heat transfer.
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The NUMERICALACCURACYsection focuses on the development of more accu-
rate numerical methods to be used In combustor flow codes. Upwind differenc-
ing, which Is currently used in these flow codes, introduces an appreciable
error (or numerical diffusion) Into the calculation. This error may be of
such a large magnitude that It obscures the turbulence model used In the cal-
culation. A series of calculations are illustrated which demonstrate the
accuracy of a variety of differencing schemes.

An important aspect of improved accuracy is the effect that the differ-
encing scheme has on the rate of convergence. The improved accuracy schemes
all appear to require more CPU tlme to converge. For this reason, the next
section discusses solution algorithms. SIMPLE (semi-Implicit pressure-linked
equations) is one of the most widely used solution algorithms for solving the
steady-state form of the Navler-Stokes equations. Although this scheme has
proven to be quite effective, its convergence rate can be improved. This
paper focuses on two approaches which accelerate convergence by performing
corrections that improve the lteratlve agreement with continuity. These
alternate schemes are illustrated In a series of calculations.

A third section examines the importance of inlet boundary conditions. An

illustrative example Is displayed.

The fourth section discusses turbulence models and reaction closures.

Here the more pragmatic approaches to calculating turbulent reactions are

illustrated. An eddy-breakup model and a PDF (probability density function)

method are described and compared.

Finally, the fifth section examines the accuracy of a radiation heat-
transfer model. A six-flux model of radiative heat transfer Is described.

This model provides only a limited geometric description of the radiation

transfer process, but a comparison wlth experimental data indicates an encour-

aging level of agreement.

NUMERICAL ACCURACY

The following Is a general form of the tlme-averaged equations that must
be solved In a combustor flow code:

a_(pu_) a a a a__ (1)

where _ can represent U, V, W, UlUJ'dK'anc, or H; where r_ Is the
diffusion coefficients (e.g., _eff); S_ Is the source term (e.g., - aP/ax).
The equation represents convection of a conserved scalar that Is subtracted by
diffusion terms equal to a source term that could represent a pressure gradi-

ent or a source/slnk term. These equations are solved by dlscretlzlng on a
s÷...... _ ._h ,,_._ _h^ _= volu,,,_m=_huu i l) ,,_ _ayy_,_u ,,,_._u_ ................ _ .... flnl _ ...... _ ^_ t,'_ g. • _-, "_ ...... _ ....
system Is used to avoid the pressure-veloclty decoupllng that can result In a
finite volume representation of incompressible flow.

An example of the dlscretlzatlon of a convective term using central dlf-

ferencing Is the following:
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AxAy dx dy =
(pU_) e - (pu_) w

&X
(2)

(Alternate types of differencing are possible and some will be illustrated in
the following paragraphs.) Once all the terms have been approximated, llke

terms are then rearranged in a substitution formula which can be solved using

a trl-dlagonal matrix algorithm (TDMA) procedure applied in alternate

directions (ADI):

_p_p = =N_N + =S_S ÷ aE_ E + aW_ W + S (3)

where, for example,

rn (.V)n]/=N: 2

The source and diffusive terms in these equations are approximated using

central differencing which is second-order accurate (Error = O(Ax)2). The

convective terms have typically been differenced using hybrid dlfferenclng

which reverts to upwind differencing when the absolute value of the cell

Reynolds number, or cell Peclet number, is greater than 2, which is the main

reason for the loss of numerical accuracy. An example of convective dlscretl-

zatlon using hybrid differencing is as follows:

(U_)e - (u_)w
ax _ ax (4)

For upwind, with u > O,

(u_) e = Ue_ P

and

l
(u_)w = _ Uw(_w + _,p)

Since upwind differencing is only flrst-order accurate, It can introduce an
extensive amount of numerical diffusion into the calculation. The virtue of

this scheme is that it provides "bounded," stable solutions. Higher order

convective schemes invariably yield nonphysical oscillations in the solution.
Upwind differencing avoids this, at a considerable loss in accuracy.

To alleviate this problem, NASA has conducted a program to identify and

incorporate an improved accuracy differencing scheme into a combustor flow

code. Under a portion of this program a variety of differencing schemes were
examined in several test calculations. The schemes examined included QUICK

(quadratic upstream interpolation) and SUD (skewed upwind differencing).

QUICK differencing was developed by Leonard (ref. 1). This scheme improves

the accuracy of convective differencing by performing an upwind biased quad-

ratic interpolation. For u > O,
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1 3 3 /(Urn) e = ue - _mw * _mp * _mE

_l 3 3p)(uq,)w = uw w

(S)

where grid point locations are as noted on figure 2. This scheme Is second-
order accurate and can produce nonphysical oscillations tn the solution. SUO
(skewed upwind differencing) (ref. 2) attains high accuracy by differencing in
an upwind manner along the flow streamlines. Whtle maintaining the same for-
mal accuracy as upwind differencing, the truncation error In SUO Is smaller.
For example:

For u > 0 and V > O,

(u_)e = Uem P

(um)w = Uw(1 - _)m w + Uw=msw

V = minimum of (l,V/2u)

(6)

where grld point locations are as noted In figure 3. As wlth QUICK, SUD can

produce nonphysical oscillations in the solution; therefore, a scheme to
"bound" SUD was also examined. This scheme employs the concept of flux-

blending (ref. 3), wherein a bounded flux determined from upwind differencing

Is blended wlth the unbounded, but more accurate, SUD flux. The maln factor
Is to blend as little of the lesser accurate scheme while still maintaining a

properly "bounded" solution. Thls procedure, called BSUDS, starts from an

initial, totally skew-dlfferenced estimate and blends an upwind flux If the

solution Is out of the range of neighboring values. If the solution is In

range (i.e., bounded), then no blending Is performed.

An illustration of the accuracy of the upwind, QUICK, and SUD schemes Is

seen In figure 4. This figure displays the results of a slngle-polnt scalar-

transport calculation made for various flow angles. All schemes agree with an

exact solution (no error) at a zero flow angle; however, at angles greater

than zero, each scheme displays some degree of error relating to numerical

diffusion. The error displayed by upwind differencing increases wlth flow

angle to a maximum at 45°. The QUICK scheme displays a similar behavior, but
the overall error Is much less. The SUD scheme displays a maximum error

around 15°, but It tends to zero at angles approaching 45° Both QUICK and
SUD display a much higher level of accuracy than upwind.

Although a scalar transport calculation Is useful for a general examina-
tion of some aspects of differencing scheme performance, a laminar flow calcu-

lation Is a more complete test. The results of a series of laminar flow

calculations from reference 4 are displayed In figure 5. In thls figure,
axial velocity profiies at a distance of one-half a duct height from the _nlet

are shown for two different computational meshes. In these calculations, the
steepness of the velocity profile indicates accuracy. Steep velocity profiles

are exhibited by QUICK and BSUDS; the upwind profiles exhibit a hlgh degree of

numerical diffusion. On the coarse mesh, BSUDS appears to be more accurate
than QUICK; on the flne mesh, there Is not much of a distinction between the
two schemes.
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An important aspect of improved accuracy Is the effect that the differ-
enclng scheme has on the rate of convergence. The computational times to
converge the system of governing equations In the previous laminar calcula-
tions are shown tn table I. The convergence times are ratioed to the upwind
convergence times to clearly illustrate the computational penalty paid to
attain improved accuracy. Generally, the improved accuracy schemes required
from 3 to 15 times longer to reach a converged solution. To a degree one can
hope that this computational penalty can be offset by using coarse meshes to
achieve the same overall level of accuracy. In reality, a relatively fine
mesh Is needed, even with the high-accuracy schemes. In any case, the need
for improved solution algorithms for these more accurate differencing schemes
Is strongly indicated.

SOLUTION ALGORITHMS

The previous section demonstrated the need for improved solution algo-
rithms. Thls section examines the widely used SIMPLE algorithm and two modi-
fications to this scheme. These schemes cover only a small portion of the

wlde range of methods to accelerate solution convergence. Vectorlzatlon,
dlrect-solutlon methods, and multlgrld methods - to llst Just a few - are all
areas of active research that are certain to yield much greater computational

benefits In the near future.

In the SIMPLE algorithm, a guessed pressure field is inserted Into the

dlscretlzed momentum equations to obtain a velocity field. The pressure field

is corrected by an equation which Is derived through a combination of the con-
tinuity and momentum equations. The velocity field Is then updated and is

used In the solution of the equations for k, c, and _. The corrected pres-

sure field Is treated as the guessed pressure field, and the procedure Is

repeated until a converged solution Is obtained.

for

The following velocity correction equation is used In the SIMPLE scheme

u at point e:

n_b AnbUnb + (P_ - P_)A eAeU'e =

Primes indicate corrections to old values. The underlined term, which repre-

sents the influence of corrected pressures on neighboring velocities, is

neglected In the SIMPLE algorithm. The converged solution Is unchanged by the
exclusion of thls term slnce, for the steady-state solution, the corrections

go to zero. Neglecting terms, however, does force the use of low underrelaxa-

tlon factors, which can slow convergence.

The SIMPLER algorithm improves on the SIMPLE scheme by including the

previously neglected terms when calculating the pressure field. The calcula-
tion sequence starts wlth a guessed velocity field. An equation that solves

for the pressure field (using the terms ignored In the SIMPLE scheme) Is cal-
culated from the guessed velocity field. Thls pressure field is then used to
solve the dlscretlzed momentum equations to obtain a velocity field. The

velocity field Is corrected In a manner similar to the SIMPLE velocity correc-

tion. Thls velocity field Is then treated as the guessed velocity field, and

the iteration procedure is repeated until convergence Is reached.
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Because additional equations are solved, each iteration through the

SIMPLER routine involves more computational time than an iteration step through
SIMPLE. However, higher underrelaxatlon factors can be applied in the SIMPLER

routine, thereby accelerating convergence.

The PISO scheme also takes into account the terms neglected in the SIMPLE

code, but in a different manner. The PISO routine mimics the SIMPLE approach

until the end of the first iteration. At this point, the PISO scheme employs
an equation containing the neglected terms to correct the pressure and veloc-

Ity field to more closely agree with continuity. Again, this procedure is

repeated until the solution converges. In this manner, the PISO code allows

for higher underrelaxation factors to accelerate convergence.

The performance of these various solution schemes is displayed in

figure 6. As an example, the convergence times for a 38-by-38 grid point

calculation are plotted as a function of underrelaxation factor (fig. 6(a)).
When a reasonably large underrelaxatlon factor is used, SIMPLER or PISO con-

verge about twice as fast as SIMPLE. In addition, SIMPLER and PISO converge

over a larger range of underrelaxatlon factors than SIMPLE. From an engineer-
ing standpoint, improving the "robustness" of a computational scheme is often

Just as important as accelerating convergence. The computational benefit of

using SIMPLER and PISO for flne-mesh calculations is displayed in figure 6(b).
The greater the number of mesh points used in the calculation, the greater the

benefit of SIMPLER or PISO over SIMPLE. For example, a calculation of approx-
imately 3300 grid points converges three times faster using PISO or SIMPLER

than it does using SIMPLE. This is a savings of about 600 CPU seconds. The

1440 grid points calculation demonstrated a savings of only about lO0 CPU
seconds.

INLET BOUNDARY CONDITIONS

In any calculation of a complex, three-dlmenslonal turbulent flow, the

boundary conditions that are needed in the calculation are frequently unknown

or unmeasured. The use of inappropriate values at the computational boundary
can sometimes be the main limit to the calculatlon's predictive capability.

This error can sometimes be more important than numerical accuracy or turbu-
lence model considerations. Figure 7 shows an example of a three-dlmenslonal

Jet-ln-crossflow calculation using alternate boundary conditions. In one

calculation, the Jet orifice flow was specified as having a uniform plug flow
at a position two Jet diameters upstream of the orifice outlet. This allowed

the flow to distort as it exited the orifice outlet. The second calculation

specified a uniform plug flow at the orifice outlet. The resulting axial
velocity profiles are compared with experimental data in figure B. Somewhat

surprisingly, the uniform boundary condition at the orifice compared more

favorably with experimental data than the theoretically more correct distorted

profile. This should not be interpreted as an endorsement of the use of

unlform-plug-flow boundary conditions for these types of flows. Indeed, there

is some indication of experimental error (ref. 5). This example is meant only

to illustrate that unmeasured or unknown boundary conditions can significantly
affect a numerical calculation.

TURBULENCE MODELS

Although a great deal of progress is being made in solving the three-
dimensional, tlme-dependent Navler-Stokes equations in large-eddy or direct
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numerical simulations, practical engineering calculations currently require
the introduction of some form of turbulence modeling. These models are based

on either Reynolds or Favre averaging of the exact Navter-Stokes equations,
reducing the unsteady form of these equations to an averaged form. Currently,
the most widely used turbulence model Is the two equation, k-c, closure. This
model relates the Reynolds stresses to a turbulent viscosity through
Bousslnesq's eddy-viscosity concept:

puiu : P"T aTj+ axt/ 7 61Jk
(8)

where v T = Cuk2/c. The turbulent viscosity Is related to the kinetic
energy k and the dissipation rate c of the turbulence. The transport
equations are then solved for k and c:

Ui a xl - axl\_k-- IJ_'_ + VTta-_ ÷ axlj_- i:

UI axt - aXl _- l-)c_'_ .i- Col _. lITta-._-_ + _-'_'1) ax,'l

(9)

Where C = o.og, Col = 1.44, Cc2 = 1.92, _k = 1.O, o = 1.3, o = 0.9, k =

(I12)(_ '2 + _,2 + _,2) and c = C k3/211T .

The model constants typically employed are those recommended in
reference 6. The turbulent Schmldt number a , Is frequently changed from

0.9 to as low as 0.2, depending on the flow b_Ing studied.

Thls two-equatlon model Is based on several assumptions which should be

considered when making a numerical calculation. First, the flow Is assumed to

be close to equilibrium; that Is, the flow properties change relatively slowly.

Second, the turbulence Reynolds number Is assumed to be high. Third, the tur-
bulence Is assumed to be Isotroplc.

The maln concern Is how well thls model, wlth Its inherent assumptions,

can represent combustorllke flow fields. Figure 9 displays a comparison
between laboratory experiments and numerical predictions of two different Iso-

thermal flows. (Figs. lO and ll show the locations of the measurements that
were made In the flow fields.) In the two-dlmenslonal bluff-body comparison,

a major disagreement between measurements and predictions Is evident at an
axial distance x/D of approximately 0.8. Thls corresponds to the end of the

reclrculatlon zone and causes an incorrect prediction of reclrculatlon zone

length. The Jet-ln-crossflow comparison displays a similar disagreement in

the region where the turbulence intensity Is high. In thls comparison, both

hybrid and BSUDS differencing were used In the predictions. It Is obvious
from the displayed results that numerical accuracy can have a major impact on

the comparison wlth experimental measurements. Hybrid differencing Is so

completely influenced by numerical diffusion that the qualitative agreement
between experiment and calculation, evident In the BSUDS results, Is elimi-
nated. The BSUDS results are not grld-lndependent, but It seems unlikely that

this wlll fully explain the noted disparity.
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Both of these flow fields display the greatest disagreement between exper-
Iment and calculation where the turbulence intensities are the highest. These
are regions where the flow field Is likely to be far from equilibrium. It Is
interesting to note that a full Reynolds stress transport (RST) model calcula-
tlon (presented by McGulrk, J.J., Papadlmltrlou, C., and Taylor, A.M.K.P. at
the Fifth Symposium on Turbulent Shear Flows held at Cornell University,
Ithaca, New York, August, 1985) did not yield appreciably better results for a
similar flow field. Because both models appear to lose validity around the
region of the stagnation point, further model development Is needed.

Reaction closures involve a further series of assumptions and approxima-
tions. The simplest level of closure ls to assume that the reaction Is mixing
limited and lgnore the effect of temporal density fluctuations. The reaction
rate can then be related to an eddy lifetime (_/k) using either a Magnussen-
HJertager or Spaldlngs eddy-breakup model:

Rate = -S (I0)
mF

where

= c [ASmF - p _ mln mF, A M° 2 Mpr ]STOIC ' AB STOIC + 1

or

c 2
: _ CRP_m FSmF u

where A, B, and CR are empirical constants and _/k can be considered as

the eddy lifetime. The density and temperature throughout the flow field can
then be established from equilibrium chemistry.

Improved physical realism can be added to thls model by introducing the

probability density function (PDF) for mixture fraction f. Thls can account

for the unsteady tlme history of the mixture fraction at each point In space.

A nonlinear functional dependence between concentration, temperature, and

density occurs as pockets of alternately hot and cold gases are swept past

each point In space. Integrating the resultant PDFs allows a determination of

the mean properties of the flow.

Figure 12 displays the results of both an eddy-breakup and a PDF model
calculation of a planar-mlxlng layer. The PDF model calculations (ref. 7)

demonstrate a significant improvement over the eddy-breakup results. The maln

factor involved In thls improvement Is the more physically correct representa-
t!on of the mixture fraction variation at the point of maximum temperature

rise. Of course, both of these models are only as good as the turbulence

closure and are wholly inadequate when flnlte-rate chemistry is important.

RADIATION HEAT TRANSFER

The final topic to be covered in thls review concerns radiative heat

transfer. Radiation Is one of the most significant and least understood heat

loads to the combustor liner. It can also play a significant role In the
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determination of flame temperature. Any numerical description of a gas tur-
bine combustor must include a radiation heat-transfer model. The stx-flux
model Is the model most commonly used to approximate multidimensional radi-
ative transfer. In thts model, differential equations describing the radi-
ative fluxes In positive and negative directions along the principal axis are
solved:

-_x 1 dRX_ a(R x -E) , S(2R x Rr - Rz)a+Sdx/ =

Ia ) S _ Rx
l d r dRr = a(Rr E) + _(2R r - Rz)
r dr + S + ! dr

r

,r ÷ S r de) = a( - E) + S(2RZ - Rr)

(ll)

where

Rx,r, z composite fluxes

a absorption coefficient

S scattering coefficient

E aT 4

The maln input to this analysis concerns the optical characteristics of the

hot gas and soot which must be arbitrarily specified or calculated through a
soot formation and oxidation model.

The performance of the slx-flux model (ref. 8) is displayed In figure 13.

Although the model overestimates the radiative heat transfer In comparison
wlth experimental data, the qualitative trend Is quite closely followed. Given

the large number of approximations used In the analysis, the agreement wlth

experimental data Is qulte surprising. The slx-flux model does not accurately
treat the angular dependence of energy transfer, and the determination of the

optical characteristics of the soot cloud still remains as an area of needed

research; however, fairly good results appear to be possible In thls example.

CONCLUDING REMARKS

Perhaps the most important question any review on numerical modeling can
answer Is whether or not current computational codes can be usefully employed

In the design of combustion devices. Certainly a great deal of research is

needed before one can expect quantitative predictive accuracy, and It seems

likely that some hardware problems wlll only be resolved through development

testing. The best computer program wlll never replace the designer's innova-

tive mind, but computer predictions can be used to extend the designer's pro-

ductivity. New designs can be examined much more rapidly on the computer than

in hardware testing. Development costs can be reduced. The promise of thls

computer-based design methodology Is so great that these numerical models wlll

be used despite their deficiencies. Designers should not and probably will
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not abandon empirical design tools, but the cautious adoption of numerical

models in the design process Is a trend which can reap important benefits.
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TABLE I. - RATIO OF CONVERGENCE TIMES

FOR VARIOUS DIFFERENCING SCHEMES

WITH UPWIND CONVERGENCE TIMES

USED AS THE STANDARD

Mesh Upwind

Coarse (30 by 22) i

Fine (58 by 38) l

BSUDS QUICK

6.4 3.2

14.7 15.7
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Figure I2. - Resultsofcalculationsofa planar-mixing layer.
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Figure 13. - Radiative heat transfer test calculation.
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